Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.732
1.
Front Immunol ; 15: 1384417, 2024.
Article En | MEDLINE | ID: mdl-38726013

Nipah virus (NiV) poses a significant threat to human and livestock populations across South and Southeast Asia. Vaccines are required to reduce the risk and impact of spillover infection events. Pigs can act as an intermediate amplifying host for NiV and, separately, provide a preclinical model for evaluating human vaccine candidate immunogenicity. The aim of this study was therefore to evaluate the immunogenicity of an mRNA vectored NiV vaccine candidate in pigs. Pigs were immunized twice with 100 µg nucleoside-modified mRNA vaccine encoding soluble G glycoprotein from the Malaysia strain of NiV, formulated in lipid nanoparticles. Potent antigen-binding and virus neutralizing antibodies were detected in serum following the booster immunization. Antibody responses effectively neutralized both the Malaysia and Bangladesh strains of NiV but showed limited neutralization of the related (about 80% amino acid sequence identity for G) Hendra virus. Antibodies were also capable of neutralizing NiV glycoprotein mediated cell-cell fusion. NiV G-specific T cell cytokine responses were also measurable following the booster immunization with evidence for induction of both CD4 and CD8 T cell responses. These data support the further evaluation of mRNA vectored NiV G as a vaccine for both pigs and humans.


Antibodies, Neutralizing , Antibodies, Viral , Henipavirus Infections , Nipah Virus , Viral Vaccines , Animals , Nipah Virus/immunology , Nipah Virus/genetics , Swine , Henipavirus Infections/prevention & control , Henipavirus Infections/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , RNA, Messenger/genetics , RNA, Messenger/immunology , Immunogenicity, Vaccine , Immunization, Secondary , Cytokines/immunology , Vaccines, Synthetic/immunology , Liposomes , Nanoparticles
2.
PLoS One ; 19(5): e0300507, 2024.
Article En | MEDLINE | ID: mdl-38728300

According to the 2018 WHO R&D Blueprint, Nipah virus (NiV) is a priority disease, and the development of a vaccine against NiV is strongly encouraged. According to criteria used to categorize zoonotic diseases, NiV is a stage III disease that can spread to people and cause unpredictable outbreaks. Since 2001, the NiV virus has caused annual outbreaks in Bangladesh, while in India it has caused occasional outbreaks. According to estimates, the mortality rate for infected individuals ranges from 70 to 91%. Using immunoinformatic approaches to anticipate the epitopes of the MHC-I, MHC-II, and B-cells, they were predicted using the NiV glycoprotein and nucleocapsid protein. The selected epitopes were used to develop a multi-epitope vaccine construct connected with linkers and adjuvants in order to improve immune responses to the vaccine construct. The 3D structure of the engineered vaccine was anticipated, optimized, and confirmed using a variety of computer simulation techniques so that its stability could be assessed. According to the immunological simulation tests, it was found that the vaccination elicits a targeted immune response against the NiV. Docking with TLR-3, 7, and 8 revealed that vaccine candidates had high binding affinities and low binding energies. Finally, molecular dynamic analysis confirms the stability of the new vaccine. Codon optimization and in silico cloning showed that the proposed vaccine was expressed to a high degree in Escherichia coli. The study will help in identifying a potential epitope for a vaccine candidate against NiV. The developed multi-epitope vaccine construct has a lot of potential, but they still need to be verified by in vitro & in vivo studies.


Glycoproteins , Nipah Virus , Viral Vaccines , Nipah Virus/immunology , Viral Vaccines/immunology , Glycoproteins/immunology , Glycoproteins/chemistry , Humans , Henipavirus Infections/prevention & control , Henipavirus Infections/immunology , Computer Simulation , Epitopes/immunology , Epitopes/chemistry , Molecular Dynamics Simulation , Nucleocapsid/immunology , Molecular Docking Simulation
3.
Viral Immunol ; 37(4): 216-219, 2024 05.
Article En | MEDLINE | ID: mdl-38717823

In May 2022, mpox began to spread worldwide, posing a serious threat to human public health. Modified Vaccinia Ankara-Bavaria Nordic (MVA-BN) is a live attenuated orthopoxvirus vaccine that has been authorized by the U.S. Food and Drug Administration as the vaccine of choice for the prevention of mpox. In this study, we conducted a meta-analysis of all currently published literature on the efficacy and safety of the MVA-BN vaccine in the real world, showing that the MVA-BN vaccine is effective and safe, with efficacy of up to 75% with a single dose and up to 80% with a two-dose vaccine. Meanwhile, we found that subcutaneous injection has lower local and systemic adverse events than intradermal injection, regardless of single- or two-dose vaccination, and subcutaneous injection is better tolerated in children, the elderly, or people with underlying medical conditions. These results have important reference value for clinical practice.


Vaccine Efficacy , Vaccines, Attenuated , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Poxviridae Infections/prevention & control , Poxviridae Infections/immunology , Vaccinia virus/immunology , Vaccinia virus/genetics , Vaccination , Injections, Subcutaneous , Injections, Intradermal , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Orthopoxvirus/immunology , Orthopoxvirus/genetics , Child
4.
Front Immunol ; 15: 1373656, 2024.
Article En | MEDLINE | ID: mdl-38742108

African swine fever virus (ASFV) is one of the most complex viruses. ASFV is a serious threat to the global swine industry because no commercial vaccines against this virus are currently available except in Vietnam. Moreover, ASFV is highly stable in the environment and can survive in water, feed, and aerosols for a long time. ASFV is transmitted through the digestive and respiratory tract. Mucosal immunity is the first line of defense against ASFV. Saccharomyces cerevisiae (SC), which has been certified by the U.S. Food and Drug Administration and has a generally recognized as safe status in the food industry, was used for oral immunization in this study. ASFV antigens were effectively expressed in recombinant SC strains with high DNA copy numbers and stable growth though surface display technology and chromosome engineering (δ-integration). The recombinant SC strains containing eight ASFV antigens-KP177R, E183L, E199L, CP204L, E248R, EP402R, B602L, and B646L- induced strong humoral and mucosal immune responses in mice. There was no antigenic competition, and these antigens induced Th1 and Th2 cellular immune responses. Therefore, the oral immunization strategy using recombinant SC strains containing multiple ASFV antigens demonstrate potential for future testing in swine, including challenge studies to evaluate its efficacy as a vaccine against ASFV.


African Swine Fever Virus , African Swine Fever , Antigens, Viral , Immunization , Saccharomyces cerevisiae , Viral Vaccines , Animals , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Saccharomyces cerevisiae/immunology , Saccharomyces cerevisiae/genetics , Administration, Oral , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antigens, Viral/immunology , African Swine Fever/immunology , African Swine Fever/prevention & control , Swine , Immunity, Mucosal , Antibodies, Viral/blood , Antibodies, Viral/immunology , Mice, Inbred BALB C , Female , Immunity, Humoral
5.
BMC Infect Dis ; 24(1): 476, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714948

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (Dabie bandavirus), which has become a substantial risk to public health. No specific treatment is available now, that calls for an effective vaccine. Given this, we aimed to develop a multi-epitope DNA vaccine through the help of bioinformatics. The final DNA vaccine was inserted into a special plasmid vector pVAX1, consisting of CD8+ T cell epitopes, CD4+ T cell epitopes and B cell epitopes (six epitopes each) screened from four genome-encoded proteins--nuclear protein (NP), glycoprotein (GP), RNA-dependent RNA polymerase (RdRp), as well as nonstructural protein (NSs). To ascertain if the predicted structure would be stable and successful in preventing infection, an immunological simulation was run on it. In conclusion, we designed a multi-epitope DNA vaccine that is expected to be effective against Dabie bandavirus, but in vivo trials are needed to verify this claim.


Epitopes, T-Lymphocyte , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Vaccines, DNA , Viral Vaccines , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Phlebovirus/immunology , Phlebovirus/genetics , Severe Fever with Thrombocytopenia Syndrome/prevention & control , Severe Fever with Thrombocytopenia Syndrome/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics , Humans , Computer-Aided Design , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Animals , Computational Biology
6.
Vet Q ; 44(1): 1-12, 2024 Dec.
Article En | MEDLINE | ID: mdl-38726839

Duck plague (DP) is an acute, contagious and fatal disease, caused by duck enteritis virus (DEV), with worldwide distribution causing several outbreaks and posing severe economic losses. The present study was carried out with a goal of development of a live attenuated cell culture based DP vaccine using an Indian strain of DEV and evaluation of its safety, efficacy along with complete genome analysis. The live attenuated DP vaccine (DPvac/IVRI-19) was developed by serial propagation of a virulent isolate of DEV (DEV/India/IVRI-2016) in the chicken embryo fibroblast (CEF) primary cell culture. Adaptation of DEV in CEF cell culture was indicated by more rapid appearance of cytopathic effects (CPE) and gradual increase of virus titre, which reached up to 107.5 TCID50/mL after 41 passages. The safety, immunogenicity and efficacy of the vaccine were determined by immunization trials in ducklings. The DPvac/IVRI-19 was found to be avirulent and completely safe in the ducklings. Further, the vaccine induced both humoral and cell mediated immune responses and afforded 100% protection against the virulent DEV challenge. A comparison of the whole genome of DPvac/IVRI-19 (MZ911871) and DEV/India/IVRI-2016 (MZ824102) revealed significant number of mutations, which might be associated with viral attenuation. Phylogenetic tree of DEV/India/IVRI-2016 revealed its evolutionary relationship with other DEV isolates, but it formed a separate cluster with certain unique mutations. Thus, with the proven safety and 100% efficacy, the DPvac/IVRI-19 is suitable for large scale production with precisely pure form of vaccine and has potential utility at national and global levels.


Ducks , Fibroblasts , Mardivirus , Poultry Diseases , Vaccines, Attenuated , Viral Vaccines , Animals , Vaccines, Attenuated/immunology , Ducks/virology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Fibroblasts/virology , Chick Embryo , Viral Vaccines/immunology , Mardivirus/immunology , Mardivirus/pathogenicity , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , India
8.
Front Immunol ; 15: 1360140, 2024.
Article En | MEDLINE | ID: mdl-38711513

Introduction: Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods: To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results: We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion: We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.


CD8-Positive T-Lymphocytes , Cross-Priming , Dendritic Cells , Receptors, Purinergic P2X7 , Vaccinia virus , Receptors, Purinergic P2X7/immunology , Receptors, Purinergic P2X7/metabolism , Cross-Priming/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Vaccinia virus/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors , Mice, Inbred C57BL , Antigen Presentation/immunology , Antigens, Viral/immunology , Humans , Viral Vaccines/immunology
9.
Hum Vaccin Immunother ; 20(1): 2346390, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38691025

Middle East respiratory coronavirus (MERS-CoV) is a newly emergent, highly pathogenic coronavirus that is associated with 34% mortality rate. MERS-CoV remains listed as priority pathogen by the WHO. Since its discovery in 2012 and despite the efforts to develop coronaviruses vaccines to fight against SARS-CoV-2, there are currently no MERS-CoV vaccine that has been approved. Therefore, there is high demand to continue on the development of prophylactic vaccines against MERS-CoV. Current advancements in vaccine developments can be adapted for the development of improved MERS-CoV vaccines candidates. Nucleic acid-based vaccines, including pDNA and mRNA, are relatively new class of vaccine platforms. In this work, we developed pDNA and mRNA vaccine candidates expressing S.FL gene of MERS-CoV. Further, we synthesized a silane functionalized hierarchical aluminosilicate to encapsulate each vaccine candidates. We tested the nucleic acid vaccine candidates in mice and evaluated humoral antibodies response. Interestingly, we determined that the non-encapsulated, codon optimized S.FL pDNA vaccine candidate elicited the highest level of antibody responses against S.FL and S1 of MERS-CoV. Encapsulation of mRNA with nanoporous aluminosilicate increased the humoral antibody responses, whereas encapsulation of pDNA did not. These findings suggests that MERS-CoV S.FL pDNA vaccine candidate induced the highest level of humoral responses. This study will enhance further optimization of nanosilica as potential carrier for mRNA vaccines. In conclusion, this study suggests MERS-CoV pDNA vaccine candidate as a suitable vaccine platform for further pivotal preclinical testings.


Antibodies, Viral , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Silicon Dioxide , Vaccines, DNA , Viral Vaccines , Animals , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Mice , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Silicon Dioxide/chemistry , Mice, Inbred BALB C , Female , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccine Development
10.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Article En | MEDLINE | ID: mdl-38696217

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Nanoparticles , Porcine epidemic diarrhea virus , Viral Vaccines , Porcine epidemic diarrhea virus/immunology , Animals , Nanoparticles/chemistry , Swine , Mice , Viral Vaccines/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Mice, Inbred BALB C , Antigens, Viral/immunology , Antigens, Viral/chemistry , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Protein Domains/immunology , Female , Nanovaccines
11.
Prev Vet Med ; 227: 106197, 2024 Jun.
Article En | MEDLINE | ID: mdl-38613943

The use of virus-neutralizing (VN) and nonstructural protein (NSP) antibody tests in a serosurveillance program for foot-and-mouth disease (FMD) can identify pig herds that are adequately vaccinated, with a high percentage of pigs with VN positive antibody titers; these tests can also help identify pigs with NSP-positivity that have previously been or are currently infected even in vaccinated herds. To identify infected herds and manage infection, the combination of VN and NSP antibody tests was used in Taiwan's serosurveillance program implemented simultaneously with the compulsory FMD vaccination program. The result was the eradication of FMD: Taiwan was recognized by the World Organization for Animal Health as an FMD-free country without vaccination in 2020. Evaluation of the compulsory vaccination program incorporated in the FMD control program in Taiwan revealed that the vaccine quality was satisfactory and the vaccination program was effective during the period of compulsory vaccination (2010-2017). Sound immunological coverage was achieved, with 89.1% of pigs having VN antibody titers exceeding 1:16 in 2016. This level of immunological coverage would be expected to substantially reduce or prevent FMD transmission, which was borne out by the results of the NSP tests. We identified farms having positive NSP reactors (very low annual prevalence) before the cessation of FMD vaccination in July 2018; however, detailed serological and clinical investigations of pigs of all ages in suspect herds demonstrated that no farms were harboring infected animals after the second half of 2013. Thus, the results revealed no evidence of FMD circulation in the field, and Taiwan regained FMD-free status.


Antibodies, Neutralizing , Antibodies, Viral , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Swine Diseases , Viral Nonstructural Proteins , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Taiwan/epidemiology , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Swine Diseases/virology , Viral Nonstructural Proteins/immunology , Seroepidemiologic Studies , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Foot-and-Mouth Disease Virus/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccination/veterinary
12.
Front Immunol ; 15: 1367253, 2024.
Article En | MEDLINE | ID: mdl-38646533

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Herpesvirus 1, Bovine , Mycoplasma bovis , Vaccines, Attenuated , Vaccines, Combined , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Mycoplasma bovis/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/adverse effects , Cytokines/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Mycoplasma Infections/immunology , Vaccines, Marker/immunology , Vaccines, Marker/administration & dosage , Vaccination/veterinary , Vaccine Efficacy , Immunity, Humoral , Bovine Respiratory Disease Complex/prevention & control , Bovine Respiratory Disease Complex/immunology , Bovine Respiratory Disease Complex/virology
13.
J Virol ; 98(5): e0195723, 2024 May 14.
Article En | MEDLINE | ID: mdl-38557247

Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.


Antibodies, Viral , Spike Glycoprotein, Coronavirus , Virus Internalization , Virus Replication , Animals , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Mice , Humans , Antibodies, Viral/immunology , Swine , Antibodies, Neutralizing/immunology , Coronavirus Infections/virology , Coronavirus Infections/prevention & control , Viral Vaccines/immunology , Viral Vaccines/genetics , Vesicular stomatitis Indiana virus/genetics , Alphacoronavirus/genetics , Vesiculovirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Cell Line , Vero Cells , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/immunology , Rabbits , Chlorocebus aethiops , HEK293 Cells
15.
J Gen Virol ; 105(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38656455

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Alginates , Antibodies, Viral , Chitosan , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Porcine epidemic diarrhea virus , Viral Vaccines , Animals , Administration, Oral , Porcine epidemic diarrhea virus/immunology , Alginates/administration & dosage , Chitosan/administration & dosage , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Immunoglobulin A/immunology , Immunoglobulin G/blood , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Female , Gels/administration & dosage , Mice, Inbred BALB C , Interferon-gamma/immunology , Glucuronic Acid/administration & dosage , Hexuronic Acids/administration & dosage
16.
J Virol ; 98(5): e0176223, 2024 May 14.
Article En | MEDLINE | ID: mdl-38563762

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


COVID-19 Vaccines , COVID-19 , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Chlorocebus aethiops , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Measles virus/immunology , Measles virus/genetics , COVID-19 Vaccines/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Genetic Vectors , Vero Cells , Pandemics/prevention & control , Female , Betacoronavirus/immunology , Betacoronavirus/genetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Disease Models, Animal
17.
Vaccine ; 42(13): 3180-3189, 2024 May 10.
Article En | MEDLINE | ID: mdl-38614954

BACKGROUND: Tick-borne encephalitis (TBE) virus infects the central nervous system and may lead to severe neurological complications or death. This study assessed immunogenicity, safety, and tolerability of TBE vaccine in Japanese participants 1 year of age and older. METHODS: This phase 3, multicenter, single-arm, open-label study was conducted in Japanese adult (≥ 16 years) and pediatric (1-< 16 years) populations. Participants received a single 0.5-mL (adult) or 0.25-mL (pediatric) dose of TBE vaccine at each of 3 visits. The primary endpoint was the proportion of participants who were seropositive (neutralization test [NT] titer ≥ 1:10) 4 weeks after Dose 3. Secondary and exploratory endpoints included NT seropositivity rates 4 weeks after Dose 2, immunoglobulin G (IgG) seropositivity 4 weeks after Doses 2 and 3, NT geometric mean titers (GMTs), IgG geometric mean concentrations (GMCs), and geometric mean fold rises. Primary safety endpoints were frequencies of local reactions, systemic events, adverse events (AEs), and serious AEs. RESULTS: Among 100 adult and 65 pediatric participants, 99.0 % and 100.0 % completed the study, respectively. NT seropositivity was achieved in 98.0 % adult and 100.0 % pediatric participants after Dose 3; seropositivity after Dose 2 was 93.0 % and 92.3 %, respectively. In both age groups, IgG seropositivity was ≥ 90.0 % and ≥ 96.0 % after Doses 2 and 3, respectively; GMTs and GMCs were highest 4 weeks after Dose 3. Reactogenicity events were generally mild to moderate in severity and short-lived. AEs were reported by 15.0 % (adult) and 43.1 % (pediatric) of participants. No life-threatening AEs, AEs leading to discontinuation, immediate AEs, related AEs, or deaths were reported. No serious AEs were considered related to TBE vaccine. CONCLUSIONS: TBE vaccine elicited robust immune responses in Japanese participants 1 year of age and older. The 3-dose regimen was safe and well tolerated, and findings were consistent with the known safety profile of this TBE vaccine. CLINICALTRIALS: gov: NCT04648241.


Antibodies, Viral , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Immunoglobulin G , Viral Vaccines , Humans , Male , Female , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/immunology , Antibodies, Viral/blood , Adult , Child , Child, Preschool , Adolescent , Infant , Immunoglobulin G/blood , Young Adult , Encephalitis Viruses, Tick-Borne/immunology , Middle Aged , Japan , Viral Vaccines/immunology , Viral Vaccines/adverse effects , Viral Vaccines/administration & dosage , Immunogenicity, Vaccine , Healthy Volunteers , Aged , Antibodies, Neutralizing/blood , Neutralization Tests , East Asian People
18.
Viruses ; 16(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38675846

Replicating RNA, including self-amplifying RNA (saRNA) and trans-amplifying RNA (taRNA), holds great potential for advancing the next generation of RNA-based vaccines. Unlike in vitro transcribed mRNA found in most current RNA vaccines, saRNA or taRNA can be massively replicated within cells in the presence of RNA-amplifying enzymes known as replicases. We recently demonstrated that this property could enhance immune responses with minimal injected RNA amounts. In saRNA-based vaccines, replicase and antigens are encoded on the same mRNA molecule, resulting in very long RNA sequences, which poses significant challenges in production, delivery, and stability. In taRNA-based vaccines, these challenges can be overcome by splitting the replication system into two parts: one that encodes replicase and the other that encodes a short antigen-encoding RNA called transreplicon. Here, we review the identification and use of transreplicon RNA in alphavirus research, with a focus on the development of novel taRNA technology as a state-of-the art vaccine platform. Additionally, we discuss remaining challenges essential to the clinical application and highlight the potential benefits related to the unique properties of this future vaccine platform.


Alphavirus , RNA, Viral , Alphavirus/genetics , Alphavirus/immunology , RNA, Viral/genetics , Animals , Humans , Viral Vaccines/immunology , Viral Vaccines/genetics , Virus Replication , Alphavirus Infections/virology , Alphavirus Infections/prevention & control , Alphavirus Infections/immunology , Vaccine Development
19.
Viruses ; 16(4)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38675860

In 1929, it was reported that yellowing symptoms caused by a tobacco mosaic virus (TMV) yellow mosaic isolate were suppressed in tobacco plants that were systemically infected with a TMV light green isolate. Similar to vaccination, the phenomenon of cross-protection involves a whole plant being infected with an attenuated virus and involves the same or a closely related virus species. Therefore, attenuated viruses function as biological control agents. In Japan, many studies have been performed on cross-protection. For example, the tomato mosaic virus (ToMV)-L11A strain is an attenuated isolate developed by researchers and shows high control efficiency against wild-type ToMV in commercial tomato crops. Recently, an attenuated isolate of zucchini yellow mosaic virus (ZYMV)-2002 was developed and registered as a biological pesticide to control cucumber mosaic disease. In addition, attenuated isolates of pepper mild mottle virus (PMMoV), cucumber mosaic virus (CMV), tobacco mild green mosaic virus (TMGMV), melon yellow spot virus (MYSV), and watermelon mosaic virus (WMV) have been developed in Japan. These attenuated viruses, sometimes called plant vaccines, can be used not only as single vaccines but also as multiple vaccines. In this review, we provide an overview of studies on attenuated plant viruses developed in Japan. We also discuss the application of the attenuated strains, including the production of vaccinated seedlings.


Plant Diseases , Plant Viruses , Plant Diseases/virology , Plant Diseases/prevention & control , Japan , Plant Viruses/genetics , Plant Viruses/physiology , Plant Viruses/isolation & purification , Plant Viruses/classification , Biological Control Agents , Tobacco Mosaic Virus/genetics , Cross Protection , Vaccines, Attenuated , Solanum lycopersicum/virology , Viral Vaccines/immunology
20.
Viruses ; 16(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38675881

Rabbit hemorrhagic disease virus 2 (RHDV2) emerged in the United States in 2018 and has spread in both domestic and wild rabbits nationwide. The virus has a high mortality rate and can spread rapidly once introduced in a rabbit population. Vaccination against RHDV2 provides the best protection against disease and should be considered by all rabbit owners. Here, we investigate the duration of immunity provided by vaccination with the Medgene Platform conditionally licensed commercial vaccine 6 months following the initial series. Rabbits received either the vaccination or a placebo and were challenged with RHDV2 6 months later. All vaccinated rabbits survived challenge whereas 18/19 non-vaccinated controls succumbed to infection within 10 or fewer days post-challenge. These results demonstrate lasting immunity following vaccination with the Medgene RHDV2 vaccine.


Baculoviridae , Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Vaccination , Vaccines, Synthetic , Viral Vaccines , Animals , Hemorrhagic Disease Virus, Rabbit/immunology , Hemorrhagic Disease Virus, Rabbit/genetics , Rabbits , Caliciviridae Infections/prevention & control , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Caliciviridae Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Baculoviridae/genetics , Baculoviridae/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology
...